Основные свойства строительных материалов

Основные свойства строительных материалов определяют как правило области их применения и по савокупности признаков подразделяются на химические, физические, механические и технологические.
Свойства строительных материалов определяют области их применения. Только при правильной оценке качества материалов, т. е. их важнейших свойств, могут быть получены прочные и долговечные строительные конструкции зданий и сооружений высокой технико-экономическойэффективности.
Все свойства строительных материалов по совокупности признаков подразделяют на физические, химические, механические и технологические.
К физическим свойствам относятся весовые характеристики материала, его плотность, проницаемость для жидкостей, газов, тепла, радиоактивных излучений, а также способность материала сопротивляться агрессивному действию внешней эксплуатационной среды. Последнее характеризует стойкость материала, обусловливающую в конечном итоге сохранность строительных конструкций.

Химические свойства оцениваются показателями стойкости материала при действии кислот, щелочей, растворов солей, вызывающих обменные реакции в материале и разрушение его. Механические свойства характеризуются способностью материала сопротивляться сжатию, растяжению, удару, а также вдавливанию внего постороннего тела и другим видам воздействий на материал с приложением силы.
Технологические свойства— способность материала подвергаться обработке при изготовлении из него изделий.

Свойства строительных материалов

Свойства строительного материала определяются его структурой. Для получения материала заданных свойств следует создать его внутреннюю структуру, обеспечивающую необходимые технические характеристики. В конечном итоге знание свойств материалов необходимо для наиболее эффективного его использования в конкретных условиях эксплуатации.

Таблица-1. Основные свойства некоторых строительных материалов( в воздушно-сухом состоянии)

Основные свойства некоторых строительных материалов

 

 

 

 

 

 

 

 

 

Структуру строительного материала изучают на трех уровнях:
макроструктура — строение материала, видимое невооруженным глазом; микроструктура — строение, видимое через микроскоп; внутреннее строение вещества, изучаемое на молекулярно-ионном уровне(физико-химические методы исследования — электронная микроскопия, термография, рентгеноструктурный анализ и др.).

Макроструктуру твердых строительных материалов (исключая горные породы, имеющие свою геологическую классификацию) делят на следующие группы: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая и рыхло-зернистая (порошкообразная) .Искусственные конгломераты представляют собой большую группу.

Рисунок-1. Керамические стеновые материалы

Керамические теплоизоляционные изделия

 

 

 

 

 

 

 

Это различного вида бетоны, керамические и другие материалы. Ячеистая структура материала отличается наличием макропор. Она свойственна газо- и пенобетонам, газосиликатам и др. Мелкопористая структура характерна, например, для керамических материалов, получаемых в результате выгорания введенных органических веществ. Волокнистая структура присуща древесине, изделиям из минеральной ваты и др.

Рисунок-2. Рулонный материал для покрытия пола

 

 

 

 

 

 

Слоистая структура характерна для листовых, плитных и рулонных материалов. Рыхлозернистые материалы — это заполнители для бетонов, растворов, различного вида засыпка для теплозвукоизоляции и др.
Микроструктура строительных материалов может быть кристаллическая и аморфная. Эти формы нередко являются лишь различными состояниями одного и того же вещества, например кварц и различные формы кремнезема. Кристаллическая форма всегда устойчива. Чтобы вызвать химическое взаимодействие между кварцевым песком и известью в производстве силикатного кирпича, применяют автоклавную обработку сырца насыщенным водяным паром с температурой 175°С и давлением 0,8 МПа.

В то же время трепел (амфорная форма диоксида кремнезема) с известью при затворении водой образует гидросиликат кальция при нормальной температуре 15…25°С. Амфорная форма вещества может перейти в более устойчивую кристаллическую. Для каменных материалов практическое значение имеет явление полиморфизма, когда одно и то же вещество способно существовать в различных кристаллических формах, называемых модификациями.

Полиморфные превращения кварца сопровождаются изменением объема. Для кристаллического вещества характерны определенная температура плавления и геометрическая форма кристаллов каждой модификации. Свойства монокристаллов в разных направлениях неодинаковы. Теплопроводность, прочность, электропроводность, скорость растворения и явления анизотропии являются следствием особенностей внутреннего строения кристаллов. В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы хаотично. Эти материалы по своим свойствам относятся к изотропным, исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).

Рисунок-3. Камень -сланец

Сланец

 

 

 

 

 

 

 

Внутренняя структура материала определяет его механическую прочность, твердость, теплопроводность и другие важные свойства.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или разных элементов, как в SiO2);

Ионами (разноименно заряженными, как в кальците СаСОз, или одноименными, как в металлах); целыми молекулами (кристаллы льда).
Ковалентная связь, обычно осуществляемая электронной парой, образуется в кристаллах простых веществ (алмазе, графите) или в кристаллах, состоящих из двух элементов (кварце, карборунде). Такие материалы отличаются высокой прочностью и твердостью, они весьма тугоплавки.
Ионные связи образуются в кристаллах материалов, где связь имеет в основном ионный характер, например гипс, ангидрид. Они имеют невысокую прочность, не водостойки.

Рисунок-4. Полевой шпат

Полевой шпат

 

 

 

 

 

 

 

 

В относительно сложных кристаллах (кальците, полевых шпатах) имеют место и ковалентная и ионная связи. Например, в кальците внутри сложного иона СО2/3 связь ковалентная, но с ионами Са2+ — ионная. Кальцит СаСО3 обладает высокой прочностью, но малой твердостью, полевые шпаты имеют высокие прочность и твердость.

Молекулярные связи образуются в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, которые удерживаются друг около друга относительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (кристаллы льда), имеющими низкую температуру плавления.

Силикаты имеют сложную структуру. Волокнистые минералы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические силы, недостаточные для разрыва цепей, расчленяют такой материал на волокна.

Рисунок-5. Пластинчатый минерал слюда

Слюда

 

 

 

 

 

 

 

Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки. Сложные силикатные структуры построены из тетраэдров SiO4, связанных между собой общими вершинами (атомами кислорода) и образующих объемную решетку, поэтому их рассматривают как неорганические полимеры.

Строительный материал характеризуется химическим, минеральным и фазовым составом. Химический состав строительных материалов позволяет судить о ряде свойств материала — механических, огнестойкости, биостойкости, а также других технических характеристиках. Химический состав неорганических вяжущих материалов (извести, цемента и др.) и естественных каменных материалов удобно выражать содержанием в них оксидов (%).

Основные и кислотные оксиды химически связаны и образуют минералы, которые характеризуют многие свойства материала.Минеральный состав показывает, каких минералов и в каком количестве содержится в данном материале, например в портландцементе содержание трехкальциевого силиката (3CaO·SiO2) составляет 45…60%, причем при большем содержании этого минералла ускоряется процесс твердения и повышается прочность.

Фазовый состав и фазовые переходы воды, находящейся в его порах, оказывают большое влияние на свойства материала. В материале выделяют твердые вещества, образующие стенки пор, то есть каркас и  поры наполненные воздухом или водой. Изменение содержания воды и ее состояния меняет свойства материала.

 

Классификация и стандартизация свойств

Основные и специальные свойства строительных материалов можно разделить на следующие группы с учетом тех воздействий на материалы, которые встречаются в эксплуатационных условиях: параметры состояния и структурные характеристики, определяю? щие технические свойства: химический, минеральный и фазовый состав; удельные характеристики массы (плотность и объемная масса) и пористость; дисперсность порошкообразных материалов;

физические свойства: реологические свойства пластично-вязких материалов; свойства гидрофизические, теплофизические, акустические, электрические, определяющие отношение материала к различным физическим процессам; стойкость против физической коррозии (морозостойкость, радиационная стойкость, водостойкость);

механические свойства, определяющие отношение материала к деформирующему и разрушающему действию механических нагрузок (прочность, твердость, упругость, пластичность, хрупкость и др.);

химические свойства: способность к химическим превращениям, стойкость против химической коррозии; долговечность и надежность.

Свойства материалов оценивают числовыми показателями, устанавливаемыми путем испытаний в соответствии со стандартами, В СССР создана единая государственная система стандартизации, которая позволяет применять стандартизацию во всех отраслях народного хозяйства. Тем самым обеспечивается эффективность действия стандартов как одного из средств ускорения научно-технического прогресса и повышения качества продукции.

Система органов и служб стандартизации представлена общесоюзным органом по стандартизации (Государственный комитет стандартов Совета Министров СССР) и его службами — службой стандартизации в отраслях народного хозяйства, службой стандартизации в союзных республиках. В зависимости от сферы действия стандарты делят на четыре категории: государственные (ГОСТ), отраслевые (ОСТ), республиканские (РСТ) и стандарты предприятий (СТП).

Государственные стандарты — это обязательный документ для всех предприятий, организаций и учреждений, независимо от их ведомственной подчиненности, во всех отраслях народного хозяйства СССР и союзных республик. В соответствии с постановлением Совета Министров СССР их утверждает Госстандарт, а стандарты в области строительства и строительных материалов — Государственный комитет СССР по делам строительства (Госстрой СССР), Особо важные государственные стандарты (по специальному переч-ню) утверждает Совет Министров СССР.

В области строительных материалов и изделий наиболее распространены стандарты: технических условий; технических требований; типов изделий и их основных параметров, методов испытаний; правил приемки, маркировки, упаковки, транспортирования и хранения.

Стандарты технических требований нормируют показатели качества, надежности и долговечности продукции, ее внешний вид. Вместе с тем такие стандарты устанавливают гарантийный срок службы и комплектность поставки изделий. Большинство стандартов на строительные материалы и изделия — это стандарты технических требований. Значительная часть требований в стандартах связана с физико-механическими характеристиками материалов (объемной массой, водопоглощением, влажностью, прочностью, морозостойкостью) .

Одна из особенностей государственной системы стандартизации в строительстве и технологии строительных изделий состоит в том, что кроме стандартов здесь действует система нормативных документов, объединенная в Строительные нормы и правила (СНиП). СНиП — это свод общесоюзных нормативных документов по проектированию, строительству и строительным материалам, обязательный для всех организаций и предприятий.

Методическую основу стандартизации размеров в проектировании, изготовлении строительных изделий и при возведении сооружений составляет Единая модульная система (ЕМС). Эта система представляет собой совокупность правил координации размеров элементов зданий и сооружений, строительных изделий и оборудования на базе основного модуля, равного 100 мм (обозначается 1М). Применение ЕМС позволяет унифицировать и сократить число типоразмеров строительных изделий. Это обеспечивает взаимозаменяемость деталей, выполненных из разных материалов или отличающихся по конструкции. Изделия и детали одинаковых типоразмеров, изготовленные в соответствии с требованиями ЕМС, могут быть использованы в зданиях разнообразного назначения.

В Единую модульную систему входят и производные модули, которые получают путем умножения основного модуля на целые или дробные коэффициенты. При умножении на целые коэффициенты образуются укрупненные модули, а при умножении на коэффициенты менее единицы — дробные модули (табл. 2).

Таблица-2. Размеры модулей в ЕМС

 Размеры модулей в ЕМС

 

Производные укрупненные модули (60М, 30М, 12М) и кратные им размеры рекомендуется применять для назначения продольных и поперечных шагов зданий. Модули 6М, 3М, 2М предназначены для членения конструктивных элементов в плане зданий, назначения

ширины проемов. Основной модуль 1М и дробные модули от 1/2М до 1/20М применяют для назначения размеров сечения относительно малых элементов (колонн, балок и т. д.). Наиболее мелкие дробные модули (от 1/10М до 1/100М) используют для назначения толщин плитных и листовых материалов, ширины зазоров, допусков.

Созданные в СССР Строительные нормы и правила имеют большое международное значение. Решением Постоянной комиссии СЭВ по строительству СНиП взят за основу унифицированных норм и правил в области строительства для всех стран — членов СЭВ.

Работы по стандартизации в интернациональном масштабе проводятся специально созданной в 1947 г. Международной организацией по стандартизации (ИСО). Деятельность ИСО, как указано в ее уставе, имеет целью содействовать благоприятному развитию стандартизации во всем мире для того, чтобы облегчить международный обмен товарами и развивать взаимное сотрудничество в области научной, технической и экономической деятельности. Кроме ИСО активную работу в области международной стандартизации и социалистической экономической интеграции проводят Совет Экономической Взаимопомощи и его Международный институт по стандартизации.

Связь строения и свойств

Знание строения строительного материала необходимо для понимания его свойств и в конечном итоге для решения практического вопроса, где и как применить материал, чтобы получить наибольший технико-экономический эффект.

Строение материала изучают на трех уровнях: 1) макроструктура материала — строение, видимое невооруженным глазом; 2) микроструктура материала — строение, видимое в оптический микроскоп; 3) внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне, изучаемом методами рентгеноструктурного анализа, электронной микроскопии и т. п.

Макроструктура твердых строительных материалов*может быть следующих типов: конгломератная, ячеистая, мелкопористая, волокнистая, слоистая, рыхлозернистая (порошкообразная). *Примечание: природные каменные материалы сюда не относятся, так как горные породы имеют собственную геологическую коассификацию.

Искусственные конгломераты — это обширная группа, объединяющая бетоны различного вида, ряд керамических и других материалов.

Ячеистая структура характеризуется наличием макропор, свойственных газо- и пенобетонам, ячеистым пластмассам.

Мелкопористая структура свойственна, например, керамическим материалам, поризованным способами высокого водозатворения и введением выгорающих добавок.

Волокнистая структура присуща древесине, стеклопластикам, изделиям из минеральной ваты и др. Ее особенностью является резкое различие прочности, теплопроводности и других свойств вдоль и поперек волокон.

Слоистая структура отчетливо выражена у рулонных, листовых, плитных материалов, в частности у пластмасс со слоистым наполнителем (бумопласта, текстолита и др.).

Рыхлозернистые материалы — это заполнители для бетона, зернистые и порошкообразные материалы для мастичной теплоизоляции, засыпок и др.

Микроструктура веществ, составляющих материал, может быть кристаллическая и аморфная. Кристаллические и аморфные формы нередко являются лишь различными состояниями одного и того же вещества. Примером служит кристаллический кварц и различные аморфные формы кремнезема. Кристаллическая форма всегда более устойчива.

Чтобы вызвать химическое взаимодействие между кварцевым песком и известью, в технологии силикатного кирпича применяют автоклавную обработку отформованного сырца насыщенным водяным паром с температурой не менее 175°С и давлением 0,8 МПа. Между тем трепел (аморфная форма двуокиси кремния) вместе с известью после затворения водой образует гидросиликат кальция при нормальной температуре 15 — 25°С. Аморфная форма вещества может перейти в более устойчивую кристаллическую форму.

Практическое значение для природных и искусственных каменных материалов имеет явление полиморфизма — когда одно и то же вещество способно существовать в различных кристаллических формах, называемых модификациями. Наблюдаются, например, полиморфные превращения кварца, сопровождающегося изменением объема.

Особенностью кристаллического вещества является определенная температура плавления (при постоянном давлении) и определенная геометрическая форма кристаллов каждой его модификации.

Свойства монокристаллов неодинаковы в разных направлениях. Это механическая прочность, теплопроводность, скорость растворения, электропроводность и др. Явление анизотропии является следствием особенностей внутреннего строения кристаллов.

В строительстве применяют поликристаллические каменные материалы, в которых разные кристаллы ориентированы беспорядочно. Подобные материалы рассматриваются как изотропные по своим строительно-техническим свойствам. Исключение составляют слоистые каменные материалы (гнейсы, сланцы и др.).

Внутреннее строение веществ, составляющих материал, определяет механическую прочность, твердость, тугоплавкость и другие важные свойства материала.

Кристаллические вещества, входящие в состав строительного материала, различают по характеру связи между частицами, образующими пространственную кристаллическую решетку. Она может быть образована: нейтральными атомами (одного и того же элемента, как в алмазе, или разных элементов, как в SiO2); ионами (разноименно заряженными, как в СаС03, или одноименными, как в металлах); целыми молекулами (кристаллы льда).

Ковалентная связь, осуществляемая обычно электронной парой, образуется в кристаллах простых веществ (алмаз, графит) и в кристаллах некоторых соединений из двух элементов (кварц, карборунд, другие карбиды, нитриды). Такие материалы выделяются очень высокой механической прочностью и твердостью, они весьма тугоплавки.

Ионные связи образуются в кристаллах тех материалов, в которых связь имеет преобладающе ионный характер. Распространенные строительные материалы этого типа гипс и ангидрид имеют невысокую прочность и твердость, не водостойки.

В сложных кристаллах, часто встречающихся в строительных материалах (кальцит, полевые шпаты), осуществляются и ковалентная, и ионная связи. Внутри сложного иона С03-2 связь ковалентная, но сам он имеет с ионами Са+2 ионную связь. Свойства подобных материалов весьма разнообразны. Кальцит СаСОз при достаточно высокой прочности обладает малой твердостью. У полевых шпатов сочетаются довольно высокие показатели прочности и твердости, хотя и уступающие кристаллам алмаза с чисто ковалентной связью.

Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристаллах тех веществ, в молекулах которых связи являются ковалентными. Кристалл этих веществ построен из целых молекул, которые удерживаются друг около друга сравнительно слабыми ван-дер-ваальсовыми силами межмолекулярного притяжения (как в кристаллах льда). При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.

Силикаты, занимающие особое место в строительных материалах, имеют сложную структуру, обусловившую их особенности. Так, волокнистые минералы (асбест) состоят из параллельных силикатных цепей, связанных между собой положительными ионами, расположенными между цепями. Ионные силы слабее ковалентных связей внутри каждой цепи, поэтому механические воздействия, недостаточные для разрыва цепей, разделяют такой материал на волокна. Пластинчатые минералы (слюда, каолинит) состоят из силикатных групп, связанных в плоские сетки.

Сложные силикатные структуры построены из тетраэдров Si04, связанных между собой общими вершинами (общими атомами кислорода) и образующих объемную решетку. Это дало основание рассматривать их как неорганические полимеры.

Связь состава и свойств

Строительный материал характеризуется химическим, минеральным и фазовым составом.

Химический состав строительныхпор, т. е. «каркас» материала, и поры, заполненные воздухом и водой. Если вода, являющаяся компонентом этой системы, замерзает, то образовавшийся в порах лед изменяет механические и теплотехнические материалов позволяет судить о ряде свойств материала: огнестойкости, биостойкости, механических и других технических характеристиках. Химический состав неорганических вяжущих веществ (цемента, извести и др.) и каменных материалов удобно выражать количеством содержащихся в них окислов (в %). Основные и кислотные окислы химически связаны между собой и образуют минералы, которые и определяют многие свойства материала.

Минеральный состав показывает, какие минералы и в каком количестве содержатся в вяжущем веществе или в каменном материале. Например, в портландцементе содержание трехкальциевого силиката (3CaO-Si02) составляет 45 — 60%, причем при большем его количестве ускоряется твердение, повышается прочность цементного камня.

Фазовый состав материала и фазовые переходы воды, находящейся в его порах, оказывают влияние на все свойства и поведение материала при эксплуатации. В материале выделяют твердые вещества, образующие стенки свойства материала. Увеличение же объема замерзающей в порах воды вызывает внутренние напряжения, способные разрушить материал при повторных циклах замораживания и оттаивания.

*****
РЕКОМЕНДУЕМ выполнить перепост статьи в соцсетях!
*****

Добавить комментарий

Ваш адрес email не будет опубликован.

Беларуская моваEnglishFrançaisDeutschКыргызчаLatviešu valodaLietuvių kalbaLëtzebuergeschRomânăРусскийУкраїнська
Optimized with PageSpeed Ninja